EXPERIMENTAL ASSESSMENT OF SOFTWARE
METRICS USING AUTOMATED REFACTORING

Mel O Cinnéide*, Laurence Trattf, Mark Harman,
Steve Counsell¥, and Iman Hemati Moghadam?

‘ * University College Dublin, Ireland,
‘ 1 King’s College London, UK,
T University College London, UK,

¥ Brunel University, UK.

CREST

ROADMAP

Introduction and Motivation
Experimental Approach

Code-Imp: our Refactoring Platform
Experimental Results

Conclusion

THE BEWILDERING WORLD OF SOFTWARE METRICS

DCC CAMC IS
ICP ANA ooy DSC SCOM
WMC |cBMC CSPCF LCOM4
ICH bCC NOH
DAM LCOM3
CIDA MOA RFC DAC CBO
Lce LSCC NOP CPCC AlF TCC DIT CDP
CAM
ICH MIF
LCOM2 COA [IF
CBMC LCOMS5
CAl CCDA \ cs|
> 5
NHS CC apF O AREFR cce
\ﬁ ' LScM MPC
NOM LCOM1 NOC CMI
CIS SNHD NHD COF

SCC

ANALYTIC APPROACHES HAVE LIMITATIONS

Comparing formulae isn’t easy:

cC(9 =2EZE“E:/&(1)

1
E— = E {m|m € Mi(c) Aa € I }|
LCOMS5(c) L adane)

k—1

and may not tell us much about the practical
aspects of the metric.

ANIMATING THE METRICS

o Our goal 1s to animate the metrics and make then
agents of change.

Java
Program

o We use refactorings to change the metrics.

REFACTORING AND METRICS: AN OBSERVATION

Refactoring typically has an impact on metrics.

() ()

Po > P1
R

U J U J

By calculating metric values before and after applying
refactoring R, we observe the behaviour of metrics and
learn how they compare with other.

Po P1
metric 1.23 1.86
metricy 78.3 62.8

CODE-IMP:
A FRAMEWORK FOR SEARCH-
BASED REFACTORING

IMPLEMENTED TOOL: CODE-IMP

An automated search-based refactoring framework

@

Original
Source Code

@._

Refactored
Source Code

Pretty

Printer

Initial
Abstract Syntax Tree

Refactored
Abstract Syntax Tree

repeat
for each class X in the AST
for each candidaterefactoring Y in class X
if (Y satisfies preconditions) Then
apply Y to the AST
if (Y degrades fitness function) Then
roll back Y
nextfor
nextfor
until (no improvement is possible)

Three aspects to the refactoring that takes place

The set of refactorings that can be applied
The type of search technique employed
The fitness function that directs the search

CODE-IMP REFACTORINGS

Method-level refactorings
Push Down / Pull Up Method
Decrease/Increase Method Accessibility

Field-level refactorings
Push Down / Pull Up Field
Decrease/Increase Field Accessibility

Class-level refactorings
Extract/Collapse Hierarchy
Make Superclass Abstract/Concrete
Replace Inheritance with Delegation
Replace Delegation with Inheritance

THE REFACTORING PROCESS

Metrics are read after each refactoring i1s applied

)))))
Rl Rz R3 Rn
P, /m—{ P, —— P, /—— P; === P,
Po | P1 P> | P3 Ph
metric1|2.12(2.6712.8912.50 |.cccvvon.... 4.05

metric2| 8.73|8.52 | 8.66 | 8.88 12.7

INVESTIGATION I:
(GENERAL ASSESSMENT OF
COHESION METRICS

COHESION METRICS

In this investigation we explore five popular
cohesion metrics:

LSCC Low-level Slmllarlty-Based Al Dallal and Briand, 2010
Class Cohesion

CC Class Cohesion Bonja and Kidanmariam, 2006

SCOM Sensitive Class Cohesion |Fernandez and Pefa, 2006

LCOM5 Lack of Cohesion between Henderson-Sellers, 1996
Methods

TCC Tight Class Cohesion Biemann and Kang, 1995

SOFTWARE ANALYSED

We analysed over 300,000 lines of Java code.

Application #LOC # Classes
ArtOflllusion 87,352 459
JabRef 61,966 675
JGraphX 48,810 229
GanttProject 43,913 547
XOM 28, 723 212
JHotDraw 14,577 208
JRDF 12,773 206
JTar 9,010 59

FITNESS FUNCTION

Our goal 1s to explore the metrics, not to
1mprove the program being refactored.

Applying refactorings randomly will usually
cause all metrics to deteriorate.

So we apply the first refactoring we find that
1mproves at least one of the metrics.

We measured:
Volatility
Probability of positive change

EXPERIMENT AND RESULTS

Metric volatility as a percentage

JHotDraw | JTar | XOM | JRDF | JabRef | JGraph | ArtOflllusion | Gantt | All
(1007) (115) | (193) | (13) | (257) (525) (593) (750) | (3453)
LSCC 06 99 100 02 99 100 99 06 98
TCC 86 53 97 46 61 72 84 7 78
SCOM 79 70 93 92 79 89 T 80 31
CC 100 08 100 92 99 100 100 99 100
LCOMS5 100 100 | 100 100 100 100 100 99 100

o Volatility 1s dependent on a combination of a metric and
the application to which 1t 1s applied (and also on the
applied refactorings).

EXPERIMENT AND RESULTS

Application| N LSCC TCC | SCOM CC |LCOMS5
JHotDraw |1007 |501 46| 457 41381 40] |53147|511 49]
XOM 193 |571 43| |51146]]501 44| |51149] 481 52|
ArtOflllusion |593 |571 42| |521 35| |441 33| |5871 42561 43|
GanttProject|750 |531 43| |391 31| |401 40| |57142]|507 50}
JabRef 257 |541 46| |341 27| |37142] |55144]1491 50|
JRDF 13 |467 46| 231 23] |467 46 |461 46] |541 46
JTar 115 |501 49| |301 23| |341 36| |52146] |5071 40|
JGraph 525 |51148] |371 35361 53] [611 39| 411 59]

Spearman rank correlation between the metrics

LSCC | TCC | SCOM | CC
TCC 0.60
SCOM 0.70 | 0.58
CC 0.10 0.01 -0.28
LCOMS5 | -0.17 | -0.21 | -0.46 |]|0.72

METRIC CONFLICT

We categorise each metric pair as follows:

Agreement |Both metrics improve, disimprove, or remain the same

Dissonance | One metric changes while the other remains the same

Conflicted |One metric improves while the other disimproves

45% agreement, 17% dissonance, and 38% conflict

The conflicted figure indicates that the metrics
embody contradictory notions of cohesion -- a
unified notion of cohesion is 1impossible.

INVESTIGATION 1I:
COMPARISON OF TCC VS. LSCC

AN ANALYSIS OF TCC vs. LSCC

In Investigation II we show how our approach can be
used to compare two metrics in detail.

Our aim 1s to have a qualitative and quantitative
analysis of TCC VS. LSCC and more specifically
investigate the effect of including inheritance in
the metrics definition.

A single application is refactored, JHotDraw.

FITNESS FUNCTION

A refactoring 1s accepted only if it 1s Pareto optimal
across all the classes of the application.

We expect that a refactoring that fulfills this robust
criterion 1s likely to be acceptable to a programmer.

EXPERIMENTS AND RESULTS

o To inherit or not to inherit

LSCC === TCC s TCC| o= == = | SCCI

0.056 0.335 0.2 0.04
- - 0.13
0.0555 == | 033 e e 01,035
I-/_/_ . 0.16 - <
N 2 \ - 0.03
0.055 £ 0.14 ! ’
k1 -
’ L 0.325 < - -
2 0.12 " I - 0.025
0.0545

- L
- "'I/ L 0.32 0.1 0.02
0.054 femememe=
._/——/ 0.315 - F 0015
e 0.06

0.0535 o | o.01
0.052 - 0.31 '
0.02 . 0.005
0.0525 11— 0,305 S ————— Y |
i1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 1 5 91317212529333741454953576165697377 818589

o So inheritance does matter!
 TCC and LSCC are strongly positively correlated
+ TCCi and LSCCi are strongly negatively correlated

o Several hitherto unknown anomalies exist in these mei:]f'ics°

QUALITATIVE ANALYSIS

Class A {
void f() {... x=1; ..}
int X;

}

1

class A {
void f() {... x=1; ...}
int x,V;

}

class B extends A {

void g {... y=1; ..}
inty;

JAN

class B extends A {
voidg() {... y=1; ...}

LSCC prefers the solution on the right, which seems
to conflict with OO principles while TCC prevents
this refactoring.

QUALITATIVE ANALYSIS

Looking at PushDownMethod more closely yields:

class A { class A {
void foo() { protected int X, y;
y=1 }
x=1
. T
private int x, y;
} class B extends A {
void foo() {
% y=1
x=1
class B extends A { }
} }

LSCC; prefers the solution on the left; TCC;
prefers that on the right.

CONTRIBUTION

1. Introduction of a novel approach to metric analysis through
experimental assessment of software metric using
automated refactoring.

2. Propose a quantitative and qualitative insight into
similarity and dissimilarity of 5 popular cohesion metrics.

3. In applying this to a set of 5 cohesion metrics, a
considerable degree of conflict (38%) was found.

4. Closer examination of two cohesion metrics, TCC and LSCC
Including or excluding inheritance has a large impact on a metric

Several hitherto unknown anomalies exist in these metrics

THANK YOU

