
EXPERIMENTAL ASSESSMENT OF SOFTWARE

METRICS USING AUTOMATED REFACTORING

Mel Ó Cinnéide*, Laurence Tratt‡, Mark Harman†, 

Steve Counsell¥, and Iman Hemati Moghadam†

* University College Dublin, Ireland,

‡ King’s College London, UK,

† University College London, UK,

¥ Brunel University, UK.



ROADMAP

 Introduction and Motivation

 Experimental Approach

 Code-Imp: our Refactoring Platform

 Experimental Results

 Conclusion

1



THE BEWILDERING WORLD OF SOFTWARE METRICS

2

LSCM

ICP
DSCCOH

CAMC CIS

ICBMC

SCOM

ICH

RFC DAC

NOH

CBO

SCC

WMC

AHF

LCCCAM
LSCC CPCC

LCOM4

CDP

LCOM5

MOA

DCC

MIF

CIDA

COA

NHS

DAM

ANA

LCOM3

CCE

DITAIF

CC

MPC

DCC

NOC

COF

LCOM1

NHD

TCCNOP

SNHDCIS

CAI

NOM

CSP

AHEF
CSI

CF

CBMC
CCDA

IIF

CMI

ICH
LCOM2



ANALYTIC APPROACHES HAVE LIMITATIONS

 Comparing formulae isn’t easy:

 and may not tell us much about the practical

aspects of the metric.

3



ANIMATING THE METRICS

4

 Our goal is to animate the metrics and make then

agents of change.

Java

ProgramTCC LSCC

 We use refactorings to change the metrics.



5

REFACTORING AND METRICS: AN OBSERVATION

 Refactoring typically has an impact on metrics.

P0 P1
R

 By calculating metric values before and after applying

refactoring R, we observe the behaviour of metrics and

learn how they compare with other.

P0 P1

metric1 1.23 1.86

metric2 78.3 62.8



CODE-IMP:

A FRAMEWORK FOR SEARCH-

BASED REFACTORING



IMPLEMENTED TOOL: CODE-IMP

 An automated search-based refactoring framework

6

 Three aspects to the refactoring that takes place

 The set of refactorings that can be applied

 The type of search technique employed

 The fitness function that directs the search



CODE-IMP REFACTORINGS

 Method-level refactorings

 Push Down / Pull Up Method

 Decrease/Increase Method Accessibility

 Field-level refactorings

 Push Down / Pull Up Field

 Decrease/Increase Field Accessibility

 Class-level refactorings

 Extract/Collapse Hierarchy

 Make Superclass Abstract/Concrete

 Replace Inheritance with Delegation

 Replace Delegation with Inheritance

7



THE REFACTORING PROCESS

8

 Metrics are read after each refactoring is applied

P0

R1
P1

R2
P2

R3
P3 Pn

Rn

metric1

metric2

P0

2.12

8.73

P1

2.67

8.52

P2

2.89

8.66

P3

2.50

8.88

Pn

4.05

12.7



INVESTIGATION I:

GENERAL ASSESSMENT OF

COHESION METRICS



COHESION METRICS

 In this investigation we explore five popular
cohesion metrics:

9

LSCC
Low-level Similarity-Based 

Class Cohesion
Al Dallal and Briand, 2010

CC Class Cohesion Bonja and Kidanmariam, 2006

SCOM Sensitive Class Cohesion Fernández and Peña, 2006

LCOM5
Lack of Cohesion between 

Methods
Henderson-Sellers, 1996

TCC Tight Class Cohesion Biemann and Kang, 1995



SOFTWARE ANALYSED

We analysed over 300,000 lines of Java code.

10

Application # LOC # Classes

ArtOfIllusion 87,352 459

JabRef 61,966 675

JGraphX 48,810 229

GanttProject 43,913 547

XOM 28, 723 212

JHotDraw 14,577 208

JRDF 12,773 206

JTar 9,010 59



FITNESS FUNCTION

 Our goal is to explore the metrics, not to

improve the program being refactored.

 Applying refactorings randomly will usually

cause all metrics to deteriorate.

 So we apply the first refactoring we find that

improves at least one of the metrics.

 We measured:

1. Volatility

2. Probability of positive change
11



EXPERIMENT AND RESULTS

12

 Volatility is dependent on a combination of a metric and

the application to which it is applied (and also on the

applied refactorings).



EXPERIMENT AND RESULTS

13

Application N LSCC TCC SCOM CC LCOM5

JHotDraw 1007 50↑ 46↓ 45↑ 41↓ 38↑ 40↓ 53↑ 47↓ 51↑ 49↓

XOM 193 57↑ 43↓ 51↑ 46↓ 50↑ 44↓ 51↑ 49↓ 48↑ 52↓

ArtOfIllusion 593 57↑ 42↓ 52↑ 35↓ 44↑ 33↓ 58↑ 42↓ 56↑ 43↓

GanttProject 750 53↑ 43↓ 39↑ 31↓ 40↑ 40↓ 57↑ 42↓ 50↑ 50↓

JabRef 257 54↑ 46↓ 34↑ 27↓ 37↑ 42↓ 55↑ 44↓ 49↑ 50↓

JRDF 13 46↑ 46↓ 23↑ 23↓ 46↑ 46↓ 46↑ 46↓ 54↑ 46↓

JTar 115 50↑ 49↓ 30↑ 23↓ 34↑ 36↓ 52↑ 46↓ 50↑ 40↓

JGraph 525 51↑ 48↓ 37↑ 35↓ 36↑ 53↓ 61↑ 39↓ 41↑ 59↓



METRIC CONFLICT

14

Agreement Both metrics improve, disimprove, or remain the same

Dissonance One metric changes while the other remains the same

Conflicted One metric improves while the other disimproves

 We categorise each metric pair as follows:

 45% agreement, 17% dissonance, and 38% conflict

 The conflicted figure indicates that the metrics

embody contradictory notions of cohesion -- a

unified notion of cohesion is impossible.



INVESTIGATION II:

COMPARISON OF TCC VS. LSCC



AN ANALYSIS OF TCC VS. LSCC

 In Investigation II we show how our approach can be

used to compare two metrics in detail.

 Our aim is to have a qualitative and quantitative

analysis of TCC VS. LSCC and more specifically

investigate the effect of including inheritance in

the metrics definition.

 A single application is refactored, JHotDraw.

15



FITNESS FUNCTION

 A refactoring is accepted only if it is Pareto optimal

across all the classes of the application.

 We expect that a refactoring that fulfills this robust

criterion is likely to be acceptable to a programmer.

16



EXPERIMENTS AND RESULTS

17

 So inheritance does matter!

 TCC and LSCC are strongly positively correlated

 TCCi and LSCCi are strongly negatively correlated

 Several hitherto unknown anomalies exist in these metrics

 To inherit or not to inherit



QUALITATIVE ANALYSIS

18

 LSCC prefers the solution on the right, which seems

to conflict with OO principles while TCC prevents

this refactoring.

Class A {

void f() {... x=1; ...}

int x;

}

class B extends A {

void g() {... y=1; ...}

int y;

……..

}

class A {

void f() {... x=1; ...}

int x, y;

}

class B extends A {

void g() {... y=1; ...}

………

}



QUALITATIVE ANALYSIS

19
 LSCCi prefers the solution on the left; TCCi

prefers that on the right.

class A {

void foo() {

y = 1;

x = 1

}

private int x, y;

}

class B extends A {

}

class A {

protected int x, y;

}

class B extends A {

void foo() {

y = 1;

x = 1

}

}

 Looking at PushDownMethod more closely yields:



CONTRIBUTION

1. Introduction of a novel approach to metric analysis through

experimental assessment of software metric using

automated refactoring.

2. Propose a quantitative and qualitative insight into

similarity and dissimilarity of 5 popular cohesion metrics.

3. In applying this to a set of 5 cohesion metrics, a

considerable degree of conflict (38%) was found.

4. Closer examination of two cohesion metrics, TCC and LSCC

• Including or excluding inheritance has a large impact on a metric

• Several hitherto unknown anomalies exist in these metrics

20



THANK YOU


