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. Maximize compression
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4th Symposium on
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Just some of the many
SBSE applications
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Agent Oriented

Aspect Oriented Just some of the many
Assertion Generation

Bug Fixing o o
Component Oriented S BS E aP P I | Catl O n S
Design

Effort Estimation

Heap Optimisation

Model Checking

Predictive Modelling

Probe distribution

Program Analysis

Program Comprehension

Program Transformation

Project Management

Protocol Optimisation

QoS

Refactoring

Regression Testing

Requirements

Reverse Engineering

SOA

Software Maintenance and Evolution

Test Generation

generation

62 Mark Harman, CREST
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Tutorial Paper

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza and Shin Yoo.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial.

in LNCS 7007.
Editors: Bertrand Meyer and Martin Nordio.

google: search based software engineering tutorial

PDF also freely available on my website
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Pickering’s Harem

This is what
computers looked like
100 years ago

Dilbert’s Cube Farm

This is what
programmers look like
today
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Dynamic Adaptive SBSE

Compile SBSE into deployed Software

First achieve “Static Adaptive SBSE!”
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The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs-

Mark Harman', William B. Langdon’, Yue Jia', David R. White?, Andrea Arcuri®, John A. Clark®
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK
*School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 S5GH, UK.
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The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs-

Mark Harman', William B. Langdon’, Yue Jia', David R. White?, Andrea Arcuri*, John A. Clark®
‘CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
‘School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
'‘Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.

ABSTRACT

Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching beyond the reach of current
compiler technologies. Rather than having to focus on the
details required to manage complex, inter-related and con-
flicting, non-functional trade offs, the designer is thus freed
to explore, to understand, to control and to decide rather
than to construct.

Categories and Subject Descriptors

D.2 Software Engineering|

Keywords

SBSE, Search Based Optimization, Compilation, Non-functional

Properties, Genetic Programming, Pareto Surface.

1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
selves making arbitrary choices when such objective are in
conflict with one another.

Furthermore, speed and size are but two of many objec-
tives that the next generation of software systems will have
to consider. There are many others such as bandwidth,
throughput, response time, memory consumption and re-
source access. It is unrealistic to expect an engineer to de-
cide, up front, on the precise weighting that they attribute
to each such non-functional property, nor for the engineer
even to know what might be achievable in some unfamiliar
environment in which the system may be deployed.

Emergent computing application paradigms require sys
tems that are not only reliable, compact and fast, but which
also optimise many different competing and conflicting ob-
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ABSTRACT
Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching hgyond the rgg@th of current
.
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Keywords
SBSE, Search Based Optimization, Compilation, Non-functional
Properties, Genetic Programming, Pareto Surface.

1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation.
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
selves making arbitrary choices when such objective are in
conflict with one another,

Furthermore, speed and size are but two of many objec-
tiges, that the next generation of software systems will have
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... what’s the difference between ASE and ESEM keynote!?
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Compile SBSE into deployed Software

... Where’s the evidence that this is feasible?
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Exciting evidence ...
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A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W.Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. (ICSE‘12)

C. Le Goues, T. Nguyen, S. Forrest, and W.Weimer. GenProg: A generic method
for automatic software repair. (TSE’12)

W.Weimer, T.V. Nguyen, C. L. Goues, and S. Forrest. Automatically finding

patches using genetic programming. In International Conference on Software
Engineering (ICSE‘09)
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A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W.Weimer. A systematlc study of
automated program repair: Fixing 55 ¢

C. Le Goues, T. Nguyen, S. Forrest, ¢
for automatic software repair. (TSE’

W.Weimer, T.V. Nguyen, C. L. Goues,
patches using genetic programming. |
Engineering (ICSE'09)
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WV. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

__device _int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int pin =0 ;
int offset = 0;

G_idata( strstart1+ pin ) == G_idata( strstart2+ pin ) ;offset ++

pin = offset ;

_ Blue - fixed by template. Red - evolved
return pin ; Black - default — evolved but no impact.

Mark Harman, CREST
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W. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

__device _int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int thid = 0;

int pout = 0;

int pin =0 ; € ¢
int offset = 0;

ot am oloments = 208 Code can be re-evolved
G idat trstart .
b  {-om one environment to an
thid = G _idata( strstart2+ thid ) ; entirel)’ NEw enVironment ’o
ey :
pin = ofiset and programming language.

return pin ;

}
| Mark Harman, CREST
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Trading Functional & Non-
Functional Requirements

D. R.White, J. Clark, ]. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power pseudorandom number
generators (SEAL 2008)
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D. R.White, J. Clark, ]. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power pseudorandom number
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500,000,000 LoC

one has to write approximately 6 statements
before one is writing unique code
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M. Gabel and Z. Su.
A study of the uniqueness of source code. (FSE 2010)
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Dynamically Discovering
Static Truths

Program

Test cases "= -

M. D. Ernst. Dynamically Discovering Likely Program Invariants.
PhD Thesis, University of Washington, 2000.

M. D. Ernst, . Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. |[EEE Transactions on Software

Engineering, 27(2):1-25, Feb. 2001.
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Latest CREST results

Bowtie2: real program of 50,000 LoC
39 files, 20,000 LoC in main code

data structures, modules, file access ...
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Latest CREST results

Bowtie2: real program of 50,000 LoC
39 files, 20,000 LoC in main code
data structures, modules, file access ...
Evolved E Bowtie2
/70 times faster on average

and a modest functional improvement
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Pictures used with thanks from these sources

chemical plant from http://commons.wikimedia.org/wiki/File:Chemical_Plant_VVestern_Reclamation.jpg

test tubes from http://commons.wikimedia.org/wiki/File:50ml_Falcon_tubes-02.jpg
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Pickering's Harem: [Public domain], via Wikimedia Commons

BBC_Micro: [Public domain], via Wikimedia Commons

IBM PC: By Boffy B (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

IMac: By Matthieu Riegler; Wikimedia Commons [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)],
via Wikimedia Commons

Programmer: undesarchiv, B 145 Bild-F031434-0006 / Gathmann, Jens / CC-BY-SA [CC-BY-SA-3.0-de (http://
creativecommons.org/licenses/by-sa/3.0/de/deed.en)], via Wikimedia Commons

Clouds: By jackietran [Creative Commons Attribution-Noncommercial 3.0 Unported License]

Agile: By Devon Fyson [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Human and Monkey: Ekman P, Friesen WYV, Hager |C. Facial Action Coding System. Salt Lake City: Research Nexus; 2002.omologous f
movements in 2 human (Ekman et al., 2002)

jet engine from http://commons.wikimedia.org/wiki/File:Jet_engine_numbered.svg under GPL and from http://
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