Dynamic Adaptive
Search Based
Software Engineering

Mark Harman

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

What do you mean?

Mark Harman, CREST

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke’, John A. Clark®' and Xin Yao*

['h ' that
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK. e
“Univorsiy of Siring, Stirkng, FK 4LA Scotiand, UK accombanied my Kevnote
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK

School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT Engineering (SBSE) agenda t we call ‘Dynamic Adap
: 2 . 1 e h i 1 Sofvware Fr “ing
incering (SBSE) has proved to be AT - ased Software | ne
sottware « oering autorn _ rougn
yper SBSE. At the
5 .h’-‘)

tions of code with

the research apenda K i to g bott -
ware development prooe o 8 s they 2. SBSE

Search Based Software

|

Categories and Subject Descriptors

D.2 Software Engincering

: ap

s and
% b and insight
General Terms f putational searcl vides & n for

1 automation of soltware ¢

Search Based Software

tomatic Frogramming

Keywords
SBSE, Search Based Optimization,

Autonomic Computing

1. INTRODUCTION

Livity and auto
advocate a d lopment of) arch Based S
, Re

"This p on pap s n 1 ompany Mark Har ner (f i i ! , and SWAT

Mark Harman, CREST

Saturday, 16 February 13

-

Saturday, 16 February 13

There is a paper that
accompanied my keynote

Dynamic Adaptive Search Based Software Engineering-

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
'CREST Centre, University College London, Gower Street, London, WC1E 68T, UK.
‘University of Stirling, Stirling, FK9 4LA Scotland, UK.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems,

Categories and Subject Descriptors

D.2 [Software Engineering

General Terms

Search Based Software Engineering (SBSE), Evolution, Au-
tomatic Programming, Measurement, Testing

Keywords

SBSE, Search Based Optimization, Self-Adaptive Systems,
Autonomic Computing

Engineering (SBSE) agenda that we call ‘Dyn:
p ftware Engineering’. We seek greater
tion through the development

<. At the same time we seek

its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE
Search Based Software Engin

given to a field of research and prac

(SBSE) is the name
which computa-
tional search (as well as optimisation t« liques more usu-
ally associated with Operations Resecarch) are used to ad-
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to o nise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE provides a mechanism for
managed automation of software engineering activities.
SBSE has proved to be a widely applicable and success
ful approach, with many applications right across the full
1 of activities in software engineering, from initial
, project planning, and cost estimation to re-
gression testing and onward evolution. Few aspects of devel-
opment and deployment of software systems have remained
untouched by the SBSE research agenda

lhere i also an increasing interest in search based onti.

Mark Harman, CREST

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
University of Stirling, Stirling, FK9 4LA Scotland, UK
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
'‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Saturday, 16 February 13

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE

Search Based Software Engineering (SBSE) is the name
given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE provides a mechanism for

of software,cis INZ g

Mark Harman, CREST

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
University of Stirling, Stirling, FK9 4LA Scotland, UK
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
'‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Saturday, 16 February 13

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE
Search Based Software Engineering (SBSE) is the name
given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE pro
of softwayre :

Mark Harman, CREST

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
University of Stirling, Stirling, FK9 4LA Scotland, UK
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
'‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Saturday, 16 February 13

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE
Search Based Software Engineering (SBSE) is the name
given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE pro
of softwayre :

Mark Harman, CREST

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
University of Stirling, Stirling, FK9 4LA Scotland, UK
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
'‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Saturday, 16 February 13

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE
Search Based Software Engineering (SBSE) is the name
given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE pro
of softwayre :

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive Search Based Software Engineering:

Mark Harman', Edmund Burke?, John A. Clark® and Xin Yao*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
University of Stirling, Stirling, FK9 4LA Scotland, UK
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.
'‘School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ABSTRACT

Search Based Software Engineering (SBSE) has proved to be
a very effective way of optimising software engineering prob-
lems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored. This paper sets out the
agenda for Dynamic Adaptive SBSE, in which the optimi-
sation is embedded into deployed software to create self-
optimising adaptive systems. Dynamic Adaptive SBSE will
move the research agenda forward to encompass both soft-
ware development processes and the software products they
produce, addressing the long-standing, and as yet largely
unsolved, grand challenge of self-adaptive systems.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Search d Soft ongl 3S L Jution

Engineering (SBSE) agenda that we call ‘Dynamic Adap-
tive Search Based Software Engineering’. We seek greater
software engineering automation through the development
of hyper heuristics for SBSE. At the same time we seek
greater adaptivity through the use of dynamic optimisation;
optimisation embedded into the deployed software to re-tune
its performance parameters and even to replace large por-
tions of code with automatically re-evolved code.

2. SBSE

Search Based Software Engineering (SBSE) is the name
given to a field of research and practice in which computa-
tional search (as well as optimisation techniques more usu-
ally associated with Operations Research) are used to ad
dress problems in Software Engineering [39]. The SBSE ap-
proach seeks to optimise software engineering processes and
products using generic, robust, flexible, scalable and insight-
rich computational search. SBSE provides a mechanism for
i wan of software ringgctivities.

be a

Mark Harman, CREST

Experimental

Empirical

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Experimental vs. Empirical

discussed in the paper

Mark Harman, CREST

Saturday, 16 February 13

Experimental vs. Empirical

discussed in the paper

... but no time to discuss this today ...

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

The project

DAASE:
Dynamic Adaptive Automated Software Engineering

£12m project (2012-2018)
PhD studentships

RA positions

Mark Harman, CREST

Saturday, 16 February 13

The project

DAASE:
Dynamic Adaptive Automated Software Engineering

£6.8m project (2012-2018)
PhD studentships

RA positions

Mark Harman, CREST

Saturday, 16 February 13

The project

DAASE:
Dynamic Adaptive Automated Software Engineering

£6.8m project (2012-2018)
PhD studentships

RA positions

Mark Harman, CREST

Saturday, 16 February 13

*UCL

Saturday, 16 February 13

STIRLING GVERSITYS' Typ UNIVERSITYW

EPSRC

Grant DTC Programme

*UCL

Saturday, 16 February 13

STIRLING GVERSITYS' Typ UNIVERSITYW

EPSRC

Grant DTC Programme

*UCL

Saturday, 16 February 13

UNIVERSITYOF [UNIVERSITYOF
STIRLING BIRMINGHA;\& THE UNIVERSITYW

DTC Programme

AN

STIRLING GVERSITYS' Typ UNIVERSITYW

*UCL

Saturday, 16 February 13

EPSRC

Grant ;%{(té{&
R
¢ o
e
20T
v s

Mark Harman, CREST

Saturday, 16 February 13

EPSRC
Grant

K. %

5} ' York)

(Blrmlngham i"
: UCL)

Mark Harman, CREST

EPSRC
Grant

K. %

5} ' York)

(Blrmlngham i"
: UCL)

Mark Harman, CREST

EPSRC
Grant

EPSRC
Grant

Mark Harman, CREST

Saturday, 16 February 13

EPSRC

Grant
| Nl
£ T
gf:}»s\ﬁ\
& N \V
-
VAN
y, T— (}
4 \
o

Mark Harman, CREST

EPSRC
Grant

Mark Harman, CREST

aturday, 16 February 13

EPSRC

Grant DTC Programme

DAASE

Mark Harman, CREST

Saturday, 16 February 13

EPSRC

Grant
| Nl
£ T
gf:}»s\ﬁ\
& N \V
-
VAN
y, T— (}
4 \
o

Mark Harman, CREST

Mark Harman, CREST

EPSRC
Grant

(Birmingha
v"’.
5

i

DAASE

Mark Harman, CREST

EPSRC
Grant

. . 9% |
Birmingham <e/A 3
- (

4
.

DAASE

Mark Harman, CREST

EPSRC
Grant

2

I : - \
(Blrmlngham) 3

((

DAASE

Mark Harman, CREST

Grant Programme
York)
. . - e |
(Blrmlngha/ e 3
- 4 ucL |
N
DAASE

Mark Harman, CREST

Programme

DAASE

Mark Harman, CREST

EPSRC

Grant Programme
S Stirling)
MO
_, ‘&{ \
)\c.
York)
(Birmingha 3
% _ 4 ucL |
N:
DAASE

Mark Harman, CREST

Saturday, 16 February 13

Programme

3
a

DAASE

Mark Harman, CREST

EPSRC
Grant

Programme

DAASE

Mark Harman, CREST

Saturday, 16 February 13

EPSRC

Prosramme
Grant &

==
= 2R 2
.I

; : Stirling)
I g\ ,‘ |
L3551

"
A\
- '9‘% York)

s
\\ 4

“Oi._ﬂ’i
(Birmingham.

ey
-

N\
N

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Programme

DAASE

Mark Harman, CREST

Saturday, 16 February 13

EPSRC
Grant

Programme

DAASE

Mark Harman, CREST

Saturday, 16 February 13

EPSRC
Grant

Programme

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

What is SBSE!?

Mark Harman, CREST

What is SBSE

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

like google search!?
like code search?
like breadth first search?

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

like google search?
like code search?
like breadth first search?

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

like google search?
like code search?
like breadth first search?

potentially
W exhaustive

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

like google search?
like code search?
like breadth first search?

potentially pick one at
W exhaustive random

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

like google search?
like code search?
like breadth first search?

potentially pick one at
WY exhaustive random

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply search techniques to search
large search spaces, guided by a fitness function
that captures properties of the acceptable
software artefacts we seek.

sweet spot
like google search?

like code search!?
like breadth first search?

potentially pick one at
WY exhaustive random

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

Search Based Software

Optimization Engineering

DAASE

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

Search Based Software

Optimization Engineering

DAASE

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

Search Based Software

Optimization Engineering

DAASE

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

Search Based Software

Optimization Engineering

DAASE

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply to search
large search spaces, function
that captures properties of the acceptable
software artefacts we seek.

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply to search
large search spaces, function
that captures properties of the acceptable
software artefacts we seek.

Tabu Search Particle Swarm Optimization

Ant Colonies

Hill Climbing Genetic Algorithms
Genetic Programming
Simulated Annealing Greedy P Random

Estimation of Distribution Algorithms

Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

In SBSE we apply to search
large search spaces, function
that captures properties of the acceptable
software artefacts we seek.

Genetic Programming

Mark Harman, CREST

Saturday, 16 February 13

Origins

Mark Harman, CREST

Saturday, 16 February 13

Origins

Mark Harman, CREST

Saturday, 16 February 13

Origins

1999 - 2003

Mark Harman, CREST

Origins

1999 - 2003

Mark Harman, CREST

Origins

1999 - 2003

Mark Harman, CREST

Origins

1999 - 2003

1998: Tracy, Clark and Mander

Mark Harman, CREST

Origins

1999 - 2003

1 998: Tracy, Clark and Mander Feldt

Mark Harman, CREST

Origins

1999 - 2003

2006 - 201 |

1 998: Tracy, Clark and Mander Feldt
1996: Roper

Mark Harman, CREST

Saturday, 16 February 13

Origins

1999 - 2003

2006 - 201 |

1 998: Tracy, Clark and Mander Feldt
1996: Roper

1 995: Korel, Jones, Sthamer, Watkins

DAASE
Mark Harman, CREST

Saturday, 16 February 13

Origins

1999 - 2003

2006 - 201 |

1 998: Tracy, Clark and Mander Feldt
1996: Roper

1 995: Korel, Jones, Sthamer, Watkins

1992: Xanthakis et al.

DAASE
Mark Harman, CREST

Saturday, 16 February 13

Origins

1999 - 2003

2006 - 201 |

1998: Tracy, Clark and Mander Feldt
1996: Roper
1 995: Korel, Jones, Sthamer, Watkins
1992: Xanthakis et al.
|976: Miller and Spooner

DAASE
Mark Harman, CREST

Saturday, 16 February 13

What is SBSE

let’s listen to software engineers ...

... what sort of things do they say!

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

Mark Harman, CREST

Software Engineers Say

Mark Harman, CREST

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time
WVe need increased cohesion and decreased coupling
WWe need fewer tests that find more nasty bugs

We need to optimise for all metrics MlI,..., Mn

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time
WVe need increased cohesion and decreased coupling
WWe need fewer tests that find more nasty bugs

We need to optimise for all metrics MlI,..., Mn

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns

We need to reduce risk while maintaining completion time

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time

WVe need increased cohesion and decreased coupling

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time
WVe need increased cohesion and decreased coupling

We need fewer tests that find more nasty bugs

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time
WVe need increased cohesion and decreased coupling
We need fewer tests that find more nasty bugs

VWWe need to optimise for all metrics Ml,...,Mn

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

We need to satisfy business and technical concerns
We need to reduce risk while maintaining completion time
WVe need increased cohesion and decreased coupling
We need fewer tests that find more nasty bugs

VWWe need to optimise for all metrics Ml,...,Mn

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

Requirements: We need to satisfy business and technical concerns
Management: Ve need to reduce risk while maintaining completion time
Design: VVe need increased cohesion and decreased coupling

Testing: We need fewer tests that find more nasty bugs

Refactoring: Ve need to optimise for all metrics Ml,..., Mn

Mark Harman, CREST

Saturday, 16 February 13

Software Engineers Say

Requirements: Ve need to satisfy business and technical concerns
Management: Ve need to reduce risk while maintaining completion time
Design: VVe need increased cohesion and decreased coupling

Testing: VVe need fewer tests that find more nasty bugs

Refactoring: Ve need to optimise for all metrics Ml,..., Mn

All have been addressed in the SBSE literature

Mark Harman, CREST

Saturday, 16 February 13

Engineering words

Mark Harman, CREST

Engineering words

with acceptable bounds
tolerance

optimise
reduce cost thimize

fit for purpose

improve performance

within constraints

Mark Harman, CREST

Engineering words

tolerance

Mark Harman, CREST

Engineering words

with acceptable bounds

Mark Harman, CREST

Engineering words

improve performance

Mark Harman, CREST

Engineering words

within constraints

Mark Harman, CREST

Saturday, 16 February 13

Engineering words

fit for purpose

Mark Harman, CREST

Engineering words

reduce cost

Mark Harman, CREST

Engineering words

with acceptable bounds
tolerance

optimise
reduce cost Optimize

fit for purpose

improve performance

within constraints

DAASE

Mark Harman, CREST

Saturday, 16 February 13

The advantages of SBSE

Mark Harman, CREST

The advantages of SBSE

Mark Harman, CREST

The advantages of SBSE

‘

-y Insight-rich
§I *

Scalable Robust
Y <
Generic Realistic

DAASE

Mark Harman, CREST

The advantages of SBSE

o

Scalable

Mark Harman, CREST

The advantages of SBSE

“

Insight-rich

Mark Harman, CREST

The advantages of SBSE

ol

Robust

Mark Harman, CREST

The advantages of SBSE

o ¥

Realistic

Mark Harman, CREST

The advantages of SBSE

Generic

Mark Harman, CREST

.. but ...
why is
Software Engineering
different!?

Mark Harman, CREST

in situ fithess test

Mark Harman, CREST

in situ fithess test

Physical Engineering

Mark Harman, CREST

in situ fithess test

Physical Engineering

DAASE

Mark Harman, CREST

Saturday, 16 February 13

in situ fithess test

Physical Engineering

cost: $20,000.00

DAASE

Mark Harman, CREST

Saturday, 16 February 13

in situ fithess test

Physical Engineering Virtual Engineering

cost: $20,000.00

DAASE

Mark Harman, CREST

Saturday, 16 February 13

in situ fithess test

Physical Engineering Virtual Engineering

cost: $20,000.00

DAASE

Mark Harman, CREST

Saturday, 16 February 13

in situ fithess test

Physical Engineering Virtual Engineering

cost: $20,000.00 cost: $0.00.0000000002

DAASE

Mark Harman, CREST

spot the difference

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional
Engineering Artifact

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization
Engineering Artifact goal

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization
Engineering Artifact goal

Maximize compression

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization
Engineering Artifact goal

Maximize compression

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software
Engineering Artifact

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software
Engineering Artifact

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization
Engineering Artifact goal

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization
Engineering Artifact goal

Maximize cohesion

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization
Engineering Artifact goal

Maximize cohesion

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

DAASE

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

Maximize compression

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fitness computed
Engineering Artifact goal on a representation

. Maximize compression

Minimize fuel consumption

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fithess computed
Engineering Artifact goal on a representation

. Maximize compression

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

Minimize coupling

Mark Harman, CREST

Saturday, 16 February 13

spot the difference

Traditional Optimization Fitness computed
Engineering Artifact goal on a representation

. Maximize compression

Software Optimization Fitness computed
Engineering Artifact goal Directly

Maximize cohesion

Minimize coupling

Mark Harman: ETAPS 2010 Keynote paper

Mark Harman, CREST

Saturday, 16 February 13

Growth Trends

Mark Harman, CREST

Saturday, 16 February 13

e g 9@ Qx Q
Iy § & @

suonedqng Jo JaquinN

L

—
=

[z

[

B

[

(

L
[

O

TT10¢C
O10c
booze
800T
Looz
900%
Sooz
tooz
&oozT
{010 I
T00¢C
0003c
66061
80O6T
LO6T
96061
go0T
Poo6T
&o60T
oO0oT
16671
060671
O80T
88061
LROT
980T
GR6T
PgoT
&80T
oROT
1861
OROT
O6L0T
|LOT
LL6T
0LO6T

CREST

’

Mark Harman

.

Saturday, 16 February 13

600%T

800%T

1 LOOT

900%

CooT

ooz

e @ 9 Q9 .0
Iy § & @

suonedqng Jo JaquinN

£00T

L

T00¢C
0003c
66061
80O6T
LO6T
96061
go0T
Poo6T
&o60T
oO0oT
16671
060671
O80T
88061
LROT
980T
GR6T
Pgo6T
&80T
oROT
| I86T

OROT

O6L0T

|LOT
| LLOT

[9L6T

—
e

-

=

-

C

[

=

[

CREST

’

Mark Harman

.

Saturday, 16 February 13

Percentage of Paper Number

Germany
7% Spain
6%

China
5%

| Brazil
2 57 Ttaly

“_Finland
2%

\,
\

\ “_Australia
~ 0
_France 1%
Norway 2%
2%

Mark Harman, CREST

Saturday, 16 February 13

Global Uptake of SEBASE Project Ideas and Techniques 6%

SEBASE)

100

1

-‘-: U C L * l-'\l\‘} L ? l \-!\.l - by Number of rescarchers
‘rf%pk BIRMINGHAM

in each country

Mark Harman, CREST

Saturday, 16 February 13

CFINSUGIINEST DB OTKSIION

w/ESB 701

23 de Setembro de 2012 | Natal-RN-Brasil

4th Symposium on
Search Based Software Engineering

September 28th - 30th, 2012
Riva del Garda | Trento | Italy

L L1 R
NSOF l\\ \l k.

FARNAL CF L ENGINEERING

COUNVI EMPIRICA
MAINTENANCE [t
AND EVOLUTION

RESEARCH AND PRACTICE

4th International Workshop on

Search-Based Software Testing

March, 2011, Berlin, Germany

u In conjunction with ICST 2011

IEEE International Conference on Testing, Verification and Validation

Mark Harman, CREST

Saturday, 16 February 13

»

)
Ad ™
“ -~

YTl
e 55s
s ttbv' .
L

DAASE

s I
.
5
"'M*'
-l
‘47 .
¢ - »
;
v

- ’

|

, o~

!

iy

).

.
Saturday, 16 February 13

Mark Harman, CREST

SE Topic coverage

Mark Harman, CREST

Percentage of Paper Number

Software/Program

Verification General Aspects
_ 3% 5%

~Requirements/Spe
cifications

7%

Design
Tools and
_Techniques

8%

Testing and
Debugging
53%

Management _Distribution,
10% Maintenance,

and
Enhancement

9%

Mark Harman, CREST

Saturday, 16 February 13

Percentage of Paper Number

Software/Program

Verification General Aspects
_ 3% 5%

~Requirements/Spe
cifications

7%

Design
Tools and
_Techniques

8%

Testing and
Debugging
53%

Management _Distribution,
10% Maintenance,

and
Enhancement

9%

Mark Harman, CREST

Saturday, 16 February 13

Just some of the many
SBSE applications

82

Mark Harman, CREST

Agent Oriented

Aspect Oriented Just some of the many
Assertion Generation

Bug Fixing o o
Component Oriented S BS E aP P I | Catl O n S
Design

Effort Estimation

Heap Optimisation

Model Checking

Predictive Modelling

Probe distribution

Program Analysis

Program Comprehension

Program Transformation

Project Management

Protocol Optimisation

QoS

Refactoring

Regression Testing

Requirements

Reverse Engineering

SOA

Software Maintenance and Evolution

Test Generation

generation

62 Mark Harman, CREST

Saturday, 16 February 13

Tutorial Paper

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza and Shin Yoo.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial.

in LNCS 7007.
Editors: Bertrand Meyer and Martin Nordio.

google: search based software engineering tutorial

PDF also freely available on my website

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

functional vs. non functional

Mark Harman, CREST

Requirements

Mark Harman, CREST

Saturday, 16 February 13

Functional Non-Functional
Requirements Requirements

Mark Harman, CREST

Saturday, 16 February 13

Functional Non-Functional
Requirements Requirements

Execution Time

.‘\J-‘

my | Memory

6 Bandwidth

Battery

Size

Mark Harman, CREST

Saturday, 16 February 13

Functional
Requirements

DAASE

functionality of
the Program

Non-Functional
Requirements

- D Execution Time

W/' Memory
6 Bandwidth

| #

D

ﬂm Size

Battery

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

Mark Harman, CREST

Saturday, 16 February 13

Software Design Process

DAASE

Mark Harman, CREST

(o}
-~
>
T
4]
>
=
O
(O]
L
O
~—
>
©
©
=
>
e}
©
n

Multiplicity

Mark Harman, CREST

Saturday, 16 February 13

Multiplicity

DAASE

Mark Harman, CREST

Multiplicity

) Multiple
» Multiple
Platforms

DAASE

Mark Harman, CREST

Multiplicity

) Multiple

» Multiple
Platforms

DAASE

Mark Harman, CREST

Why is the
programmer human?

DAASE

Mark Harman, CREST

Which requirements must be human coded !

Mark Harman, CREST

Saturday, 16 February 13

Which requirements must be human coded !

Non-Functional [
Requirements 8

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Which requirements must be human coded !

Non-Functional L&
Requirements 8

humans have to
define these

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Which requirements must be human coded !

a machine can
optimise these

humans have to
define these

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Which requirements are essential to human ?

Non-Functional [
Requirements 8

a machine can
optimise these

humans have to
define these

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Pickering’s Harem

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Pickering’s Harem

This is what
computers looked like
100 years ago

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Pickering’s Harem

This is what
computers looked like
100 years ago

Dilbert’s Cube Farm

Mark Harman, CREST

Saturday, 16 February 13

Pickering’s Harem

This is what
computers looked like
100 years ago

Dilbert’s Cube Farm

This is what
programmers look like
today

Mark Harman, CREST

Saturday, 16 February 13

Computers ... 7

Programmers ... !

Mark Harman, CREST

Saturday, 16 February 13

Computers ... 7

how quaint!

Programmers ... !

Mark Harman, CREST

Saturday, 16 February 13

Computers ... 7

how quaint!

Programmers ... !

how quaint!

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

First achieve “Static Adaptive SBSE!”

Mark Harman, CREST

The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs-

Mark Harman', William B. Langdon’, Yue Jia', David R. White?, Andrea Arcuri®, John A. Clark®
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK
*School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 S5GH, UK.

ABSTRACT

rties such as

id bandy

ased Soltwe
wram that
proposed progra
omatically a set of cand
y implementations, all of share functionality, but
h differ in t} al trade offs. The
Lo surface
> the
reach l' (
compiler technologies r tl aving to focus on the
details required to m er-related and o

£l

Categories and Subject Descriptors

D.2 Software Engincering

1%, o
l ecinge
permission and/

ASE']2. Se 3 2012, Essen, Genmany

Copyright X-XXXXK-XXXX -date

Keywords
SBSE, Search Based Optimization, Compilation, Non-functional
Properties, G tic Programming, Pareto Surface

1. INTRODUCTION
Humans find it hard to develop syst OC many
r and conflicting @ anct ctives. Even
iNgEas
automated

However, tl

Furthermore, speed and sia
tives that the next generat of software systems will b

to consider are y others s as bandwidth,

SOUrce accoss
cide, up front, on ¢ v weigh that they attri
to each such non-f) " riy, nor for the eng

to know wha

at are not only reliable, compact and fast, but ‘ulx.;t h

{161

otimase many difierent

competing and conflicting ob
s¢ Lime roughput and

{ resource as power, bandwidth and memory)
a result, operational ol ¢ so-called non-functional
creasingly impoe-

it and upperr mind wllware engineers
Human ¢ eV annot be expe i to opti
nally bal J se multiple and may
58 potentially valus Y " they attempt to
Why should they have wo?

@ (at code writing time) the behavic of their ¢

How can & programmer

to non-funct al properties on a platform that

with regard
drum we propose a development en
t that distinguishes between functional and non-

lional

isation of noe
[hat s, the ¢
y considered wil

sOoltware n!o’\:)(o7

Saturday, 16 February 13

ASE 2012 keynote paper

Mark Harman, CREST

Saturday, 16 February 13

ASE 2012 keynote paper

The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs-

Mark Harman', William B. Langdon’, Yue Jia', David R. White?, Andrea Arcuri*, John A. Clark®
‘CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
‘School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
'‘Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.

ABSTRACT

Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching beyond the reach of current
compiler technologies. Rather than having to focus on the
details required to manage complex, inter-related and con-
flicting, non-functional trade offs, the designer is thus freed
to explore, to understand, to control and to decide rather
than to construct.

Categories and Subject Descriptors

D.2 Software Engineering|

Keywords

SBSE, Search Based Optimization, Compilation, Non-functional

Properties, Genetic Programming, Pareto Surface.

1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
selves making arbitrary choices when such objective are in
conflict with one another.

Furthermore, speed and size are but two of many objec-
tives that the next generation of software systems will have
to consider. There are many others such as bandwidth,
throughput, response time, memory consumption and re-
source access. It is unrealistic to expect an engineer to de-
cide, up front, on the precise weighting that they attribute
to each such non-functional property, nor for the engineer
even to know what might be achievable in some unfamiliar
environment in which the system may be deployed.

Emergent computing application paradigms require sys
tems that are not only reliable, compact and fast, but which
also optimise many different competing and conflicting ob-

e e - —— A 1 -

L A e W .. "

lark Harman, CREST

The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs-

Mark Harman', William B. Langdon’, Yue Jia‘, David R. White?, Andrea Arcuri*, John A. Clark*
CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
‘School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 SGH, UK

ABSTRACT
Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching hgyond the rgg@th of current
.

ompile 10logj R at ir 'uS Ogat!

Keywords
SBSE, Search Based Optimization, Compilation, Non-functional
Properties, Genetic Programming, Pareto Surface.

1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation.
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
selves making arbitrary choices when such objective are in
conflict with one another,

Furthermore, speed and size are but two of many objec-
tiges, that the next generation of software systems will have

are mg suchahe ban
img

Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

... what’s the difference between ASE and ESEM keynote!?

Mark Harman, CREST

O&ASE 2012 Keynote Static Adaptive SBSE

| JRp— Dynamic Adaptive SBSE

DAASE
Mark Harman, CREST

Saturday, 16 February 13

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

Mark Harman, CREST

Dynamic Adaptive SBSE

Compile SBSE into deployed Software

... Where’s the evidence that this is feasible?

Mark Harman, CREST

Exciting evidence ...

Mark Harman, CREST

Bug Fixing

Mark Harman, CREST

Saturday, 16 February 13

Bug Fixing

Mark Harman, CREST

Saturday, 16 February 13

Bug Fixing

Mark Harman, CREST

Saturday, 16 February 13

Bug Fixing

Mark Harman, CREST

Saturday, 16 February 13

Bug Fixing

A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

Mark Harman, CREST

Saturday, 16 February 13

Bug Fixing

A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

Mark Harman, CREST

Saturday, 16 February 13

A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W.Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. (ICSE‘12)

C. Le Goues, T. Nguyen, S. Forrest, and W.Weimer. GenProg: A generic method
for automatic software repair. (TSE’12)

W.Weimer, T.V. Nguyen, C. L. Goues, and S. Forrest. Automatically finding

patches using genetic programming. In International Conference on Software
Engineering (ICSE‘09)

Mark Harman, CREST

Saturday, 16 February 13

A.Arcuri and X.Yao.A Novel
Co-evolutionary Approach to Automatic Software Bug Fixing. (CEC '08)

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W.Weimer. A systematlc study of
automated program repair: Fixing 55 ¢

C. Le Goues, T. Nguyen, S. Forrest, ¢
for automatic software repair. (TSE’

W.Weimer, T.V. Nguyen, C. L. Goues,
patches using genetic programming. |
Engineering (ICSE'09)

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Migration

Mark Harman, CREST

Saturday, 16 February 13

Migration

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Migration

= = -
— —

AR

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Migration

WV. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Migration

WV. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

DAASE

Mark Harman, CREST

Saturday, 16 February 13

| i N
A

J ll”[“ll

D
GP!I

WV. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

DAASE

Mark Harman, CREST

Saturday, 16 February 13

WV. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

__device _int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int pin =0 ;
int offset = 0;

G_idata(strstart1+ pin) == G_idata(strstart2+ pin) ;offset ++

pin = offset ;

_ Blue - fixed by template. Red - evolved
return pin ; Black - default — evolved but no impact.

Mark Harman, CREST

Saturday, 16 February 13

W. B. Langdon and M. Harman
Evolving a CUDA kernel from an nVidia template (CEC'10)

__device _int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int thid = 0;

int pout = 0;

int pin =0 ; € ¢
int offset = 0;

ot am oloments = 208 Code can be re-evolved
G idat trstart .
b {-om one environment to an
thid = G _idata(strstart2+ thid) ; entirel)’ NEw enVironment ’o
ey :
pin = ofiset and programming language.

return pin ;

}
| Mark Harman, CREST

Saturday, 16 February 13

Trading Functional & Non-
Functional Requirements

Mark Harman, CREST

Trading Functional & Non-
Functional Requirements

Mark Harman, CREST

Trading Functional & Non-
Functional Requirements

D. R.White, J. Clark,]. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power pseudorandom number
generators (SEAL 2008)

Mark Harman, CREST

Saturday, 16 February 13

Trading Functional & Non-
Functional Requirements

D. R.White, J. Clark,]. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power pseudorandom number
generators (SEAL 2008)

Mark Harman, CREST

Saturday, 16 February 13

ek

v
v
@
-
=
N
N
”
>
-

- %%
X xR %

X

X RO
XX 300K
Pr—— . T —,,———
2.95e+08 3.05e+08 3.15e+08 3.25e+08

Power Consumption (Sim-Wattch Units)

D. R.White, J. Clark,]. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power pseudorandom number

generators (SEAL 2008)

Mark Harman, CREST

Saturday, 16 February 13

logo (X° Fitness)

€¢
S . Functional properties are

‘just another optimisation
o o 9 o
D.R.White, J. Clark, . Jacob, and S. | objective’, like non-

Searching for resource-efficient pr¢t fiinctional properties.)y -
generators (SEAL 2008)

Mark Harman, CREST
Saturday, 16 February 13

Power C

Software Uniqueness

Mark Harman, CREST

Software Uniqueness

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Software Uniqueness

A i W M——
___T,4 = {R _ -

500,000,000 LoC

one has to write approximately 6 statements
before one is writing unique code

-'
1

Software Uniqueness

A i W M——
___T,4 = {R _ -

500,000,000 LoC

one has to write approximately 6 statements
before one is writing unique code

-'
1

500,000,000 LoC

one has to write approximately 6 statements
before one is writing unique code

[- >
|
i
K
|
)y —

M. Gabel and Z. Su.
A study of the uniqueness of source code. (FSE 2010)

Mark Harman, CREST

Saturday, 16 February 13

500,000,000 LoC

one has to write approximately 6 statements
before one is writing unique code

aLd

M. Gabel and Z. Su.
A study of the uniquenes

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Dynamically Discovering
Static Truths

Program

Test cases

Mark Harman, CREST

Dynamically Discovering
Static Truths

Program

Test cases "= -

DAASE

Mark Harman, CREST

Dynamically Discovering
Static Truths

Program

Test cases "= -

M. D. Ernst. Dynamically Discovering Likely Program Invariants.
PhD Thesis, University of Washington, 2000.

M. D. Ernst, . Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. |[EEE Transactions on Software

Engineering, 27(2):1-25, Feb. 2001.

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Dynamically Discovering
Static Truths

Program

| amount of dynamic

‘

M. D. Ernst. Dynamically Disc ‘ ' jon IS sutficient to

PhD Thesis, University of Wa . .)

and someti
M. D. Ernst, J. Cockrell, W. G.
program invariants to suppo

Engineering, 27(2):1-25, Feb.

DAASE

Mark Harman, CREST

Saturday, 16 February 13

Latest CREST results

Mark Harman, CREST

Latest CREST results

Bowtie2: real program of 50,000 LoC
39 files, 20,000 LoC in main code

data structures, modules, file access ...

Mark Harman, CREST

Latest CREST results

Bowtie2: real program of 50,000 LoC
39 files, 20,000 LoC in main code
data structures, modules, file access ...
Evolved E Bowtie2
/70 times faster on average

and a modest functional improvement

Mark Harman, CREST

Pictures used with thanks from these sources

chemical plant from http://commons.wikimedia.org/wiki/File:Chemical_Plant_VVestern_Reclamation.jpg

test tubes from http://commons.wikimedia.org/wiki/File:50ml_Falcon_tubes-02.jpg

ZXSpectrum16k/48k By Bill Bertram (Own work)

[CC-BY-SA-2.5 (http://creativecommons.org/
licenses/by-sa/2.5)], via Wikimedia Commons

Pickering's Harem: [Public domain], via Wikimedia Commons

BBC_Micro: [Public domain], via Wikimedia Commons

IBM PC: By Boffy B (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

IMac: By Matthieu Riegler; Wikimedia Commons [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)],
via Wikimedia Commons

Programmer: undesarchiv, B 145 Bild-F031434-0006 / Gathmann, Jens / CC-BY-SA [CC-BY-SA-3.0-de (http://
creativecommons.org/licenses/by-sa/3.0/de/deed.en)], via Wikimedia Commons

Clouds: By jackietran [Creative Commons Attribution-Noncommercial 3.0 Unported License]

Agile: By Devon Fyson [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Human and Monkey: Ekman P, Friesen WYV, Hager |C. Facial Action Coding System. Salt Lake City: Research Nexus; 2002.omologous f
movements in 2 human (Ekman et al., 2002)

jet engine from http://commons.wikimedia.org/wiki/File:Jet_engine_numbered.svg under GPL and from http://
commons.wikimedia.org/wiki/File:Jet_Engine_SR-71.jpg under wikimedia commons

Mark Harman, CREST

Saturday, 16 February 13

http://commons.wikimedia.org/wiki/File:Astronomer_Edward_Charles_Pickering%27s_Harvard_computers.jpg
http://commons.wikimedia.org/wiki/File:Astronomer_Edward_Charles_Pickering%27s_Harvard_computers.jpg
http://creativecommons.org/licenses/by-sa/3.0/de/deed.en)%5D
http://creativecommons.org/licenses/by-sa/3.0/de/deed.en)%5D
http://creativecommons.org/licenses/by-sa/3.0/de/deed.en)%5D
http://creativecommons.org/licenses/by-sa/3.0/de/deed.en)%5D
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0)%5D
http://creativecommons.org/licenses/by-sa/3.0)%5D
http://creativecommons.org/licenses/by/3.0)%5D
http://creativecommons.org/licenses/by/3.0)%5D
http://commons.wikimedia.org/wiki/File:50ml_Falcon_tubes-02.jpg
http://commons.wikimedia.org/wiki/File:50ml_Falcon_tubes-02.jpg
http://commons.wikimedia.org/wiki/File:Chemical_Plant_Western_Reclamation.jpg
http://commons.wikimedia.org/wiki/File:Chemical_Plant_Western_Reclamation.jpg
http://creativecommons.org/licenses/by-sa/2.5)%5D
http://creativecommons.org/licenses/by-sa/2.5)%5D
http://creativecommons.org/licenses/by-sa/2.5)%5D
http://creativecommons.org/licenses/by-sa/2.5)%5D
http://creativecommons.org/licenses/by-sa/3.0)%5D
http://creativecommons.org/licenses/by-sa/3.0)%5D
http://commons.wikimedia.org/wiki/File:Jet_engine_numbered.svg
http://commons.wikimedia.org/wiki/File:Jet_engine_numbered.svg
http://commons.wikimedia.org/wiki/File:Jet_Engine_SR-71.jpg
http://commons.wikimedia.org/wiki/File:Jet_Engine_SR-71.jpg
http://commons.wikimedia.org/wiki/File:Jet_Engine_SR-71.jpg
http://commons.wikimedia.org/wiki/File:Jet_Engine_SR-71.jpg

