Perspectives on Multiplicity
Computing

Joe Sventek
University of Glasgow



Main Points from Day 1

There will continue to be an ever-increasing
multiplicity of computational resources available for
exploitation

We wish to exploit this multiplicity of (diverse)
resources to address functional and non-functional
aspects of applications

Many of the approaches for addressing non-functional
aspects require that one be able to generate software
variants that are statistically independent

Genetic algorithms offer one promising technique for
generating such variants



Infrastructure Issues

e Whatever approaches/techniques are chosen
for exploiting resource multiplicity, significant
distributed system platform support is
required

* Most use cases include self-configuration, self-
optimization, and self-healing

e But wasn’t this promised by “autonomic
computing”?



’

Three general types of “application’

e Explicit application design targeted at
resource multiplicity — e.g. MapReduce style
processing

e Implicit structure of an application drives
exploitation of resource multiplicity — e.g.
actor-style application

 Dynamic construction of “applications” to
exploit resource multiplicity — e.g. Achieve
reliability/dependability through replication



Programming Languages

Traditional programming languages compile away
any notion of components or objects in the
source code

The unit of concurrency is a thread of control

Dynamic adaptation of an application to resource
multiplicity requires that it be straightforward for
the infrastructure to determine the concurrent
units for redistribution

It must be straightforward to be able to adapt the
unit of concurrency to heterogeneous resources



Actor Languages

* Intimately bind unit of concurrency to data
encapsulation

* Interaction between actors is through narrow,
strongly-typed communication interfaces

e |f the source code is compiled to a common
intermediate representation (byte code),
provides scope for adaptation to
heterogeneous resources (JIT compilation)



What about existing languages

* Develop the toolchain such that structural
information available in the original source
language that can aid redistribution is
maintained; a recent dissertation at ETHZ (one
of Gustavo’s students) shows how to do this
with Java/0OSGi

e Static analysis of other languages?

e Dynamic runtime monitoring to discover units
of concurrency?



Knowledge of the resources

Sophisticated, scalable monitoring of resource
availability needed to enable self-configuration,
self-optimization, self-healing

Availability needed at initial configuration time
and during runtime

May be needed at earlier epoch, when
dynamically-constructed applications are being
assembled

Must be able to operate at the required scale
and enable sophisticated querying of the
monitored information



Other concerns

 There will be policies that constrain the
composition and adaptation of these
applications — how are they specified, who's

responsible for making sure they are
enforced?



	Perspectives on Multiplicity Computing
	Main Points from Day 1
	Infrastructure Issues
	Three general types of “application”
	Programming Languages
	Actor Languages
	What about existing languages
	Knowledge of the resources
	Other concerns

