
Perspectives on Multiplicity
Computing

Joe Sventek
University of Glasgow

Main Points from Day 1

• There will continue to be an ever-increasing
multiplicity of computational resources available for
exploitation

• We wish to exploit this multiplicity of (diverse)
resources to address functional and non-functional
aspects of applications

• Many of the approaches for addressing non-functional
aspects require that one be able to generate software
variants that are statistically independent

• Genetic algorithms offer one promising technique for
generating such variants

Infrastructure Issues

• Whatever approaches/techniques are chosen
for exploiting resource multiplicity, significant
distributed system platform support is
required

• Most use cases include self-configuration, self-
optimization, and self-healing

• But wasn’t this promised by “autonomic
computing”?

Three general types of “application”

• Explicit application design targeted at
resource multiplicity – e.g. MapReduce style
processing

• Implicit structure of an application drives
exploitation of resource multiplicity – e.g.
actor-style application

• Dynamic construction of “applications” to
exploit resource multiplicity – e.g. Achieve
reliability/dependability through replication

Programming Languages

• Traditional programming languages compile away
any notion of components or objects in the
source code

• The unit of concurrency is a thread of control
• Dynamic adaptation of an application to resource

multiplicity requires that it be straightforward for
the infrastructure to determine the concurrent
units for redistribution

• It must be straightforward to be able to adapt the
unit of concurrency to heterogeneous resources

Actor Languages

• Intimately bind unit of concurrency to data
encapsulation

• Interaction between actors is through narrow,
strongly-typed communication interfaces

• If the source code is compiled to a common
intermediate representation (byte code),
provides scope for adaptation to
heterogeneous resources (JIT compilation)

What about existing languages

• Develop the toolchain such that structural
information available in the original source
language that can aid redistribution is
maintained; a recent dissertation at ETHZ (one
of Gustavo’s students) shows how to do this
with Java/OSGi

• Static analysis of other languages?
• Dynamic runtime monitoring to discover units

of concurrency?

Knowledge of the resources

• Sophisticated, scalable monitoring of resource
availability needed to enable self-configuration,
self-optimization, self-healing

• Availability needed at initial configuration time
and during runtime

• May be needed at earlier epoch, when
dynamically-constructed applications are being
assembled

• Must be able to operate at the required scale
and enable sophisticated querying of the
monitored information

Other concerns

• There will be policies that constrain the
composition and adaptation of these
applications – how are they specified, who’s
responsible for making sure they are
enforced?

	Perspectives on Multiplicity Computing
	Main Points from Day 1
	Infrastructure Issues
	Three general types of “application”
	Programming Languages
	Actor Languages
	What about existing languages
	Knowledge of the resources
	Other concerns

